On Quantum Unique Ergodicity for Locally Symmetric Spaces I Lior Silberman and Akshay Venkatesh
ثبت نشده
چکیده
We construct an equivariant microlocal lift for locally symmetric spaces. In other words, we demonstrate how to lift, in a “semicanonical” fashion, limits of eigenfunction measures on locally symmetric spaces to Cartan-invariant measures on an appropriate bundle. The construction uses elementary features of the representation theory of semisimple real Lie groups, and can be considered a generalization of Zelditch’s results from the upper half-plane to all locally symmetric spaces of noncompact type. This will be applied in a sequel to settle a version of the quantum unique ergodicity problem on certain locally symmetric spaces.
منابع مشابه
On Quantum Unique Ergodicity for Locally Symmetric Spaces I
We construct an equivariant microlocal lift for locally symmetric spaces. In other words, we demonstrate how to lift, in a “semicanonical” fashion, limits of eigenfunction measures on locally symmetric spaces to Cartan-invariant measures on an appropriate bundle. The construction uses elementary features of the representation theory of semisimple real Lie groups, and can be considered a general...
متن کاملQuantum Unique Ergodicity for Locally Symmetric Spaces Ii
We prove the arithmetic quantum unique ergodicity (AQUE) conjecture for non-degenerate sequences of Hecke eigenfunctions on quotients Γ\G/K, where G ' PGLd(R), K is a maximal compact subgroup of G and Γ < G is a lattice associated to a division algebra over Q of prime degree d. The primary novelty of the present paper is a new method of proving positive entropy of quantum limits, which avoids s...
متن کاملArithmetic Quantum Chaos on Locally Symmetric Spaces Lior Silberman a Dissertation Presented to the Faculty of Princeton University in Candidacy for the Degree of Doctor of Philosophy Recommended for Acceptance by the Department of Mathematics
We report progress on the equidistribution problem of automorphic forms on locally symmetric spaces. First, generalizing work of Zelditch-Wolpert we construct a representation theoretic analog of the micro-local lift, showing that (under a technical condition of non-degeneracy) every weak-* limit of the generalized Wigner measures associated to a sequence of Maass forms with divergent spectral ...
متن کاملQuantum Unique Ergodicity for Maps on the Torus
When a map is classically uniquely ergodic, it is expected that its quantization will posses quantum unique ergodicity. In this paper we give examples of Quantum Unique Ergodicity for the perturbed Kronecker map, and an upper bound for the rate of convergence.
متن کاملGeneralized Symmetric Berwald Spaces
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008